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The k−1 spectral law for near-wall turbulence has received only limited experimental
support, the most convincing evidence being that of Nickels et al. (Phys. Rev. Lett.
vol. 95, 2005, 074501.1). The real-space analogue of this law is a logarithmic depen-
dence on r of the streamwise longitudinal structure function. We show that, unlike the
k−1 law, the logarithmic law is readily seen in the experimental data. We argue that
this difference arises from the finite value of Reynolds number in the experiments.
Reducing the Reynolds number is equivalent to restricting the range of eddy sizes
which contribute to the k−1, or lnr , laws. While the logarithmic law is relatively
insensitive to a truncation in the range of eddy sizes (it continues to hold over the
relevant range of eddy sizes), it turns out that the k−1 law is not. This is a direct
consequence of the so-called aliasing problem associated with one-dimensional spectra,
whereby energy is systematically and artificially displaced to small wavenumbers.

1. Introduction
It has long been suggested that, for sufficiently large Reynolds number, there exists

a k−1 region of the streamwise energy spectrum in boundary layers, k being the
wavenumber (Perry, Henbest & Chong 1986). This region is thought to sit somewhere
between Kolmogorov’s E ∼ ε2/3k−5/3 inertial range and the large-scale contribution
to the spectrum, the latter arising from eddies which scale on the boundary layer
thickness, δ. (Here ε denotes the dissipation per unit mass.) Order of magnitude
arguments show that, if this region exists, it lies close to the wall, deep within the
log layer. The difficulty of measuring spectra very close to the wall at high Reynolds
number Re may explain why clear experimental data in support of the k−1 law have
remained elusive.

While this law is often derived on the basis of scaling and matching arguments, its
physical content is quite simple. It rests on the hypothesis that, within the logarithmic
region, there exists a hierarchy of eddy sizes, from y up to some fraction of δ,
whose kinetic energy scales as u2

∗. (Here u∗ is the friction velocity and y the distance
from the surface.) If such a hierarchy of space-filling eddies exists, then the k−1 law
follows immediately (see e.g. Davidson 2004). Of course, Townsend’s attached-eddy
hypothesis (Townsend 1976) pre-supposes just such a regime, and so some argue that
the k−1 law is a direct consequence of this hypothesis (Perry et al. 1986). However, we
wish to emphasize that any theory which leads to a hierarchy of space-filling eddies
whose kinetic energy scales as u2

∗ will predict a k−1 law. (This is demonstrated in § 3).
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Figure 1. The coordinate system used in this paper.

Thus there are many competing explanations for this law, such as Högström, Hunt &
Smedman (2002).

The traditional way of hunting for a k−1 law is to measure the one-dimensional
steamwise spectrum, Φuu(k). An alternative, however, is to measure the longitudinal
streamwise structure function, 〈(�u)2〉(r) = 〈(u′

x − ux)
2〉. (See figure 1 for the notation

used here.) Since the two are closely related (they are effectively Fourier transform
pairs) the structure function should exhibit a real space analogue of the Φuu(k) ∼ u2

∗k
−1

law, and indeed it does. The analogue is 〈(�u)2〉(r) = u2
∗[A + B ln(r/y)]. The central

thesis of this paper is that, while the k−1 law is relatively hard to detect in experiments,
the ln(r/y) law is easier to find. The reason, we suggest, is that Φuu(k) suffers from a
well-known defect in which energy is systematically and artificially displaced to low
k, a phenomenon termed aliasing by Tennekes & Lumley (1972). While this is not a
problem for Re → ∞, it is a major shortcoming at the finite values of Re encountered
in the laboratory, as we shall show.

2. The physical basis of the ln(r/y) law
In this section we introduce the k−1 law and its structure function equivalent.

In particular, we show that the k−1 law of Perry et al. (1986), Φuu(k) ∼ u2
∗k

−1, the
structure function law 〈(�u)2〉(r) = u2

∗[A + B ln(r/y)], and Townsend’s law for the
streamwise velocity variance, 2u2 = u2

∗[C + B ln(δ/y)], are all equivalent in the sense
that, if any one of these three laws holds, the other two follow. In § 2.1 we recall
the classical explanation for these laws using the scaling arguments of Townsend and
Perry. However, as noted above, any theory which predicts a hierarchy of space-filling
eddies whose energy scales as u2

∗ will reproduce the k−1 law, and its ln(r/y) equivalent.
Thus the existence of these laws does not in itself validate all of the scaling arguments
used. We shall return to this point later.

2.1. The scaling laws and physical arguments of Townsend and Perry

We are interested in turbulent flow over a smooth wall at very high Reynolds number
(though the essential ideas also apply to rough-wall boundary layers). We adopt
coordinates (x, y, z) where x points in the streamwise direction and y is normal to
the wall (figure 1). The second-order, longitudinal structure function, measured in the
streamwise direction, is

〈(�u)2〉(r) = 〈[ux(x + r êx) − ux(x)]2〉 = 〈(u′
x − ux)

2〉 = 2u2(1 − f (r)), (2.1)

where u2 = 〈u2
x〉 = 〈u′2

x 〉 is the streamwise velocity variance at x and x+r êx respectively
and f (r) = 〈u′

xux〉/u2 the longitudinal correlation function. We let u∗ be the friction
velocity, ν the fluid viscosity, and δ the outer scale of the flow, say the boundary layer
thickness or channel half-width.
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Consider a level y which lies within the log layer, ν/u∗ 
 y 
 δ. Here the dissipation
per unit mass, ε, is of the order of ε ∼ u3

∗/κy (assuming dissipation and production
are in approximate balance), κ being Kármán’s constant. There are four scaling
ranges for 〈(�u)2〉(r) measured in this plane. For r 
 y we have Kolmogorov scaling,
where 〈(�u)2〉 is a function of ε, ν and r . At the other extreme, r ∼ δ � y, 〈(�u)2〉 is
independent of r and saturates at a value of 2u2. This kinetic energy is dominated
by the planar sweeping motion of the large eddies whose size, s, lies in the range
y < s < δ. Townsend (1976) showed that the attached-eddy hypothesis predicts

2u2 = u2
∗[C + B ln(δ/y)], (2.2)

where C and B are constants, a law which subsequently received experimental support
(Perry & Li 1990). Between these two extremes we would expect 〈(�u)2〉 to depend on
ε, y and r , but to be independent of ν and δ. To be specific, provided r is much greater
than the Kolmogorov length, η = (ν3/ε)1/4 ∼ (ν3κy/u3

∗)
1/4, yet much smaller than δ, we

have 〈(�u)2〉 = H (r, y, ε). Noting that y/η ∼ (u∗y/ν)3/4 = (y+)3/4, and ε ∼ u3
∗/κy, we

may rewrite this in the form

〈(�u)2〉(r) = u2
∗F (r/y), (y+)−3/4 
 r/y 
 δ/y. (2.3)

Within this intermediate range there are two distinct subranges. For r 
 y we
expect local isotropy to hold (at least approximately) and so Kolmogorov’s two-thirds
law applies in the form 〈(�u)2〉(r) = αu2

∗(r/y)2/3 for (y+)−3/4 
 r/y 
 1. Here α is a
coefficient of order α ∼ β/κ2/3 ∼ 3.7, where β ∼ 2.0 is Kolmogorov’s constant.

Conversely, for r > y, 〈(�u〉)2〉 is dominated by integral-scale eddies whose approxi-
mate size lies in the size range y → r , and these have a kinetic energy of the order of
u2

∗. Now 〈(�u)2〉(r) is a measure of the contribution to 2〈u2
x〉 of eddies of size r or less,

and so d〈(�u)2〉/dr plays the role of an energy density. It follows that rd〈(�u)2〉/dr

is a measure of the kinetic energy of eddies of size r (Townsend 1976), and so we
expect

r
d

dr
〈(�u)2〉 ∼ u2

∗, y < r 
 δ. (2.4)

This integrates to give

〈(�u)2〉 ∼ u2
∗(ln r + D), y < r 
 δ,

where D is a constant of integration. Since y is the only length scale available to
normalize r , we obtain

〈(�u)2〉(r) = u2
∗[A + B ln(r/y)], y < r 
 δ. (2.5)

To summarize, provided that we are well-removed from the Kolmogorov scales,
there are three scaling ranges (see figure 2):

〈(�u)2〉(r) = αu2
∗(r/y)2/3, r 
 y, (2.6)

〈(�u)2〉(r) = u2
∗[A + B ln(r/y)], y < r 
 δ, (2.7)

〈(�u)2〉 = 2u2 = u2
∗[C + B ln(δ/y)], r ∼ δ. (2.8)

Note that the coefficients B in (2.7) and (2.8) are equal. This is a necessary matching
condition. Physically this is because 〈(�u)2〉 acts as a filter, excluding kinetic energy
from scales greater than r (Davidson 2004). The net effect of applying this filter
to (2.8) is to replace δ by r . Thus we may regard (2.7) as a direct consequence of
Townsend’s law (2.8). Conversely, we can think of (2.8) as following directly from the
structure function law.
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Figure 2. The four scaling regimes for 〈(�u)2〉.

In this paper we are primarily concerned with the intermediate scaling (2.7). The
discussion above suggests that the physical basis of this law rests on the simple
hypothesis that in the subrange y < r 
 δ, 〈(�u)2〉 is dominated by eddies whose
kinetic energy is of the order of u2

∗, and so (2.4) holds.
We shall see that (2.7) is well-supported by the experimental data, with A ≈ 2.04

and B ≈ 1.83. Note, however, that this does not imply that all of the classical scaling
arguments reported here are correct. It merely confirms that there is a hierarchy of
eddies whose energy scales as u2

∗. While the scaling arguments of Townsend (1976)
and Perry et al. (1986) have received considerable experimental support (Perry et al.
1986; Perry & Li 1990; Marusic & Kunkel 2003) there are alternative interpretations
of the evidence. For example, Högström et al. (2002) derive an equation similar to
Townsend’s expression (2.2) using a somewhat different line of reasoning, and since
(2.7) follows directly from (2.8), via the filtering property of 〈(�u)2〉, we could interpret
support for (2.7) as support for Högström et al. (2002). In any event, for the present
purposes, we are concerned only with the existence, or otherwise, of (2.7).

Finally, we note that the k−1 and ln(r) laws need not be restricted to boundary
layers. They will appear whenever there is a hierarchy of eddies with a common
velocity scale, and no externally imposed length scale. Thus the principle findings of
this paper should be relevant to other flows, such as homogeneous shear flows.

2.2. The equivalence of the k−1 and ln(r/y) laws

It is more common to formulate these arguments in spectral space, though the logic
is much the same. Let Φuu(k) be the one-dimensional Fourier transform partner of
〈u′

xux〉:

〈u′
xux〉 = 2

∫ ∞

0

Φuu(k) cos(kr) dk. (2.9)

Then the spectral equivalent of (2.3) is

kΦuu(k) = u2
∗g(ky), η 
 k−1 
 δ. (2.10)

Moreover, the kinetic energy of eddies of size k−1 is of the order of kΦuu(k), and so
the hypothesis that there exists a subrange of eddies, of size y < k−1 
 δ, whose kinetic
energy scales as u2

∗, leads to kΦuu(k) ∼ u2
∗. Thus, for some constant γ,

Φuu(k) = γ u2
∗/k, y < k−1 
 δ. (2.11)
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It is readily confirmed that, in the limit of Re → ∞, the ln(r/y) and k−1 laws
are formally equivalent, provided that γ =B/4. For example, if Φuu(k) = γ u2

∗/k for
y < k−1 <L, but otherwise zero, then (2.9) yields 〈(�u)2〉 =4γ u2

∗[Ci(r/L) − Ci(r/y) +
ln(L/y)], where Ci is the cosine integral. For y 
 r 
 L this reduces to

〈�u)2〉 = 4γ u2
∗[a + ln(r/y)], (2.12)

where a = 0.5772 is Euler’s constant. Thus, for Re → ∞, the two laws are indeed
equivalent, with B =4γ . If we wish to include the inertial range in the calculation
it is more convenient to start with the structure function. For example, if 〈(�u)2〉 is
given by (2.6) for r < y, (2.7) for y < r < L, and equal to u2

∗[A + B ln(L/y)] for r > L,
then the inverse transform yields, for ky 
 1,

Φuu(k) =
u2

∗
2πk

[BSi(kL) + O(ky)]. (2.13)

(Here Si is the sine integral.) It follows that, in the range y 
 k−1 
 L,

Φuu(k) =
B

4

u2
∗

k
[1 + O(ky)]. (2.14)

Once again we see that the ln(r/y) and k−1 laws are equivalent for Re → ∞.
Given the similar status of the k−1 and ln(r/y) laws, and the marked preference for

experimentalists to work with spectra rather than structure functions, it has become
conventional to hunt for a k−1 law in Φuu(k), rather than a ln(r/y) law in 〈(�u)2〉.
However, the formal equivalence of the two laws holds only for Re → ∞. For finite Re
they are not equivalent, in the sense that the range over which they apply may be dif-
ferent, and the observed values of B and γ need not satisfy γ =B/4. Moreover, Φuu(k)
is well-known to suffer from the problem of aliasing, in which energy is systematically
and artificially displaced to lower k. This is particularly evident in isotropic turbulence,
in which a random distribution of simple eddies of size s produces a three-dimensional
spectrum of the form E(k) ∼ u2s(ks)4 exp[−(ks/2)2], which peaks at around k ∼ π/s,
yet produces the one-dimensional spectrum Φuu(k) ∼ u2s exp[−(ks/2)2], which has a
maximum at k =0 (see the Appendix). More generally, in isotropic turbulence,

Φuu(k) =
1

2

∫ ∞

k

[1 − (k/k∗)2]
E(k∗)

k∗ dk∗, (2.15)

showing that Φuu(k) is a weighted average of all the energy contained in wavenumbers
k and higher (see for example Davidson 2004). It is legitimate to ask, therefore, if
it makes more sense to search for a ln(r/y) law. We shall see that this is indeed the
case, and that, at finite values of Re, the ln(r/y) law is evident in data where the k−1

law is not so clear.
We shall return to the experimental evidence shortly. First, however, we consider a

model problem designed to illustrate the significant difference between the Φuu(k) ∼ k−1

and 〈(�u)2〉 ∼ ln(r/y) laws at finite Re.

3. The relative sensitivity of the k−1 and ln(r/y) laws to finite values of Re

The eddies which contribute to the Φuu ∼ k−1 or 〈(�u)2〉 ∼ ln(r/y) laws vary in size
from ∼y up to ∼r , where r is some fraction of δ. As Re = u∗δ/ν is reduced, so the
corresponding range of eddy sizes shrinks. It is natural to ask how this truncation in
scales might affect the k−1 and ln(r/y) laws. In order to test this we set up a simple
model problem in which we are free to vary the range of scales present in a turbulent
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flow. We do not claim that this problem provides a model of the attached eddies in
a boundary layer. Rather, it is designed simply to test the relative sensitivity of the
k−1 and ln(r/y) laws to a truncation of scales. (More realistic models of a boundary
layer, based on hairpin vortices, are discussed in, for example, Perry et al. (1986) and
Perry & Li (1990).)

Our strategy is as follows. We create an artificial field of turbulence composed of
space-filling eddies whose size, s, lies in the range l � s � L. Moreover, we suppose
that the characteristic kinetic energy of these eddies is independent of size and equal
to u2

0. According to the arguments of § 2, this should be sufficient to reproduce the
Φuu(k) ∼ u2

0k
−1 and 〈(�u)2〉 ∼ u2

0 ln(r/y) laws, provided that l 
 L. (Note that the scale
l in this model problem corresponds to y in the ln(r/y) law.) We then look at what
happens to Φuu and 〈(�u)2〉 as the ratio L/l is reduced. To keep the analysis simple we
consider isotropic turbulence composed of a random distribution of spherical Gaus-
sian eddies (spherical blobs of vorticity whose intensity falls off as a Gaussian), though
we expect the results to be representative of eddies of other shapes, provided that
they have only one characteristic length scale. Since our model problem is isotropic,
whereas turbulence in a boundary layer is highly anisotropic, the results of this section
must be regarded as merely suggestive. Never the less, we shall see that the predictions
of our model problem are surprisingly consistent with the experimental data.

It is shown in the Appendix (see also Davidson 2004) that isotropic turbulence
created from such eddies has the following energy spectrum and correlation function:

E(k) =

∫ ∞

0

Ê(s)s

12
√

π
(ks)4 exp[−(ks)2/4] ds, (3.1)

2u2f (r) =

∫ ∞

0

4

3
Ê(s)exp[−(r/s)2] ds. (3.2)

Here the dummy variable s represents eddy size and Ê(s) is the kinetic energy density
of eddies of size s. To be more specific, the kinetic energy held in eddies of size
s1 < s < s2 is

∫ s2

s1
Ê(s) ds. We now choose Ê(s) such that Ê = 0 for s < l and s >L, and

Ê(s) = u2
0/s for l � s � L. This ensures that the total kinetic energy of the eddies is

the same from one decade of s to the next, provided of course that l � s � L.
Now E(k) and f (r) are readily calculated from (3.1) and (3.2), which in turn yields

Φuu and 〈(�u)〉 through, E(k)=k3(d/dk)(1/k)(d/dk)Φuu and 〈(�u)2〉(r)=2u2 −2u2f (r).
We find, after a little algebra,

Φuu(k) =
u2

0

3k
[erf(kL/2) − erf(kl/2)], (3.3)

〈(�u)2〉 =
2u2

0

3
[Ein(r2/l2) − Ein(r2/L2)]. (3.4)

where Ein is the exponential integral, Ein(x) =
∫ x

0
(1−e−t ) dt/t . Now consider the case

where l → 0 and L → ∞, while k and r remain of the order of unity. This gives

Φ∞
uu(k) =

u2
0

3k

[
1 − kl√

π
+ O(k2l2)

]
→ u2

0

3k
, (3.5)

〈(�u)2〉∞ =
4u2

0

3
[a/2 + ln(r/ l)], (3.6)
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Figure 3. (a) Φuu, (b) 〈(�u)2〉, (c) E(k), all for L/l =40, normalized by their value at
L/l → ∞.

where a is Euler’s constant. Evidently we have recovered the k−1 and ln(r/ l) laws,
as expected, with γ = 1/3 and B = 4/3. Note the O(kl) correction to the k−1 law for
finite l, which also appears in (2.14).

Let us now consider the effect of truncating the range of eddy sizes. We introduce
the normalized functions

f11(k) = Φuu(k)/Φ∞
uu(k), (3.7)

e(k) = E(k)/E∞(k), (3.8)

[�u]2(r) = 〈(�u)2〉/〈(�u)2〉∞, (3.9)

whose departure from unity indicates a partial loss of the k−1 and ln(r/ l) laws. By
way of illustration, we take the case of L/l = 40. (The choice of 40 is motivated by the
suggestion that this is typical of the range of eddies which contribute to the k−1 and
ln(r/y) laws in our experimental data, as discussed in § 4.) Figures 3(a), 3(b) and 3(c)
show f11(kl), [�u]2 and E(kl) for L/l = 40. It is immediately apparent that the
deviation of f11(kl) from unity is much more severe than that of [�u]2 or e(k).

Let us adopt the somewhat arbitrary convention that the ln(r/ l) law is (almost)
retained, in the sense that it would be discernible in an experiment, in regions
where 0.95 < [�u]2 < 1.05. (Our conclusions would be little changed if we allow for
somewhat larger or smaller deviations.) In the case of f11 we adopt a slightly different
convention, since it peaks below 1.0. Instead we say that the k−1 law is retained,
approximately, if f11 lies in the range 0.9 <f11 < 1.0. (Again, our conclusions would
be little changed if we altered these limits.) With these somewhat ad hoc definitions we
see that the ln(r/ l) law is more or less retained in the range 1.4 <r/l < 25, while the
k−1 law is seen only in the very narrow region 0.07 <kl < 0.2, rather than the expected
range (π/40)< kl < π. Moreover, the effective prefactor in the k−1 law, obtained by
averaging over the range 0.07 <kl < 0.2, is ∼ 8 % below the ideal value of γ = B/4.
We shall see that these results are typical of the experimental data.
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Figure 4. (a) Φuu(k) and (b) 〈(�u)2〉, normalized by u∗ and y, for y+ = 105 and 171.
Reθ =12 600.

Figure 3 also shows the range of eddy sizes present in the turbulence. (In figure 3(a)
we have used the rule of thumb that k−1 ∼ eddy size/π, which is a good approximation
for spherical Gaussian eddies (Davidson 2004).) While the ln(r/ l) law is retained near
the centre of the range of eddy sizes, as measured on a log scale, the effective
location of the k−1 law has been pushed to the left of figure 3(a). This is because,
as shown by (2.15), one-dimensional spectra tend to systematically displace energy
to larger scales, giving a distorted picture of the energy distribution. This can be
confirmed by comparing f11 with E(k). Now structure functions are themselves
imperfect filters, tending to mix information about energy and enstrophy (Davidson
2004). Nevertheless, this model problem suggests that, despite the limitations of
structure functions, they provide a better diagnostic tool than one-dimensional spectra.

4. The experimental data
We use here zero-pressure-gradient data obtained in two different experimental

facilities. The lower-Re data were obtained in the wind tunnel at the Norwegian
University of Science and Technology in Trondheim, Norway, using the facility and
measurement techniques described in Sk̊are & Krogstad (1994). The data were taken
in the same test section at zero-pressure-gradient conditions before the roof was
adjusted for the adverse-pressure gradient flow reported in this paper. The higher-
Re data were obtained in the high-Re boundary layer wind tunnel in Melbourne,
Australia, reported in Nickels et al. (2005). The data apply to smooth-wall boundary
layers at Reynolds numbers, based on the momentum thickness and free-stream
velocity, of Reθ = 12 600 and Reθ = 37 500, respectively.

Let us start with the lower Reynolds number. Figures 4(a) and 4(b) show the
one-dimensional spectrum and structure function data at Reθ = 12 600 for y+ =105
and 171 (y/δ =0.027 and 0.044). Notice that there is no evidence of a k−1 region in
figure 4(a), yet we have a clear ln(r) law in figure 4(b). The form of the ln(r/y) law is,
approximately, 〈(�u)〉(r) = u2

∗[2.04 + 1.83 ln(r/y)], which is also shown on figure 4(b).
Let us now turn to the higher Reynolds number data. Again these are smooth

wall data, but this time at Reθ =37 500. Figure 5(a) is reproduced from Nickels
et al. (2005) and shows Φuu(k), normalized by u∗ and y, in the range 100<y+ < 200.
Figure 5(b) shows the corresponding structure functions, again normalized by u∗ and
y, and obtained by Fourier transforming the data in figure 5(a).

Notice that the ln(r) law is much more evident than the corresponding k−1 region.
Note also that the ranges over which these are seen are similar to those in our model
problem, with the ln(r/y) law lying in the range 1.0 <r/y < 20, and the k−1 law in
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Figure 5. (a) Φuu(k) and (b) 〈(�u)2〉, normalized by u∗ and y, in the range 100 < y+ < 200.
Reθ = 37 500.

the range 0.1 <ky < 0.4. As before, the form of the ln(r/y) law is, approximately,
〈(�u)2〉(r) = u2

∗[2.04+1.83 ln(r/y)], which is shown on figure 5(b) for comparison. For
infinite Reynolds number this would give a value of γ = B/4 = 0.458. By comparison,
the value in figure 5(a) is γ ∼ 0.415, which is 9 % lower. Again, this is consistent with
our model problem.

5. Conclusions
While the k−1 law for near-wall turbulence it difficult to see in spectra, the equivalent

ln(r) law is quite evident in the equivalent structure function data. A simple model
problem suggests that this arises from a well-known deficiency of one-dimensional
spectra, whereby energy is systematically and artificially displaced to small wave-
numbers. Certainly our model problem is consistent with the experimental data.

The authors would like to thank Bruce Pearson for his assistance.

Appendix. Turbulence composed of Gaussian model eddies
We are interested in the kinematic properties of an artificial field of turbulence which

is composed of a random distribution of eddies of given shape. This appendix is an
expanded version of the analysis in Davidson (2004). Consider the vector potential
A = 1

4
Ωl2e exp[−2x2/l2e ]êz, where le is the eddy size. The corresponding velocity field is

a region of swirling fluid centred around the origin and of size le. Now suppose that
we create a field of turbulence by distributing such eddies randomly yet uniformly
in space. We have A = 1

4
Ωl2e

∑
m exp[−2(x − xm)2/l2e ]êm, where êm and xm give the

orientation and position of each eddy. (The vectors êm and xm constitute a set of
independent random variables.) Now consider the product of A(0) with A(r):

A(0) · A(r) =
(

1
4
Ωl2e

)2
∑

m

exp
[
−2(xm)2

/
l2e

]
êm ·

∑
n

exp
[
−2(r − xn)

2
/
l2e

]
ên.

Since the components of êm and ên are independent random variables with zero mean
we have 〈êm · ên〉 =0 for m �= n. It follows that,

〈A(0) · A(r)〉 = 1
16

Ω2l4e exp
[
−r2

/
l2e

]∑
m

〈
exp

[
−4 y2

m

/
l2e

]〉
,

where the quantity ym = xm − 1
2
r is a new random variable obtained from xm by a

shift of origin. Since the summation on the right is simply a coefficient which is
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independent of r , we have

〈A(0) · A(r)〉 = 〈A · A′〉 = A2
0exp

[
−r2

/
l2e

]
for some constant A0. It is also readily confirmed that 〈AiA

′
j 〉 = 1

3
〈A · A′〉δij . We can

now find 〈u · u′〉 and the longitudinal correlation function, f (r), from the relationships

1

r2

∂

∂r
r3u2f (r) = 〈u · u′〉 = −∇2〈A · A′〉 +

∂2

∂ri∂rj

〈AiA
′
j 〉.

It is readily confirmed that f (r) = exp[−r2/l2e ], and that the corresponding three-
dimensional and one-dimensional energy spectra are

E(k) =
〈u2〉le
24

√
π

(kle)
4exp

[
−l2e k

2
/
4
]
, Φuu(k) =

〈u2〉le
6

√
π

exp
[
−l2e k

2
/
4
]
.

Now suppose that the turbulence is composed of eddies of size l1 (randomly but
evenly distributed in space), with kinetic energy 1

2
〈u2

1〉, plus a sea of eddies of size l2,
l3, l4 . . . lN . In the limit where there is a continuous distribution of eddy sizes we can
replace li by the continuous variable s and 1

2
〈u2

i 〉 by the energy density Ê(s), which
has the property

1

2
〈u2〉 =

∫ ∞

0

Ê(s) ds =

∫ ∞

0

E(k) dk.

Then our expression for E(k) becomes

E(k) =

∫ ∞

0

Ê(s)s

12
√

π
(ks)4exp

[
−(ks)2

/
4
]
ds,

while the corresponding form for the one-dimensional spectrum is

Φuu(k) =

∫ ∞

0

Ê(s)s

3
√

π
exp

[
−(ks)2

/
4
]
ds.

These expressions show the relationship between the true energy density, Ê(s), and
the spectral energy densities E(k) and Φuu(k).
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